
International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017                                                                                           1319 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

COMPARING THE PERFORMANCE OF 
DIFFERENT COUNT REGRESSION MODELS 

OKAFOR JOSEPH IWEANANDU 
  NWAGBENU DONMINIC C, KERRY C.C, 

KONWE C.S  
OJINKEONYE, EBUKA JOACHIN  

Department of Mathematics and Statistics, Delta State Polytechnic, Og-washi-Uku 
 

Abstract— In this research, we have considered several regression models to fit the count data encounter in the field of health care 
provider visit data. We have fitted Poisson (PO), Negative Binomial (NB), Geometric (GEO), Zero-Inflated Poisson (ZIP), Zero-inflated 
Negative Binomial (ZINB), and Poisson hurdle (PH), Negative Binomial Hurdle (NBH) and Geometric Hurdle (GH) regression models to 
health care provider visit data. To compare the performance of these models, we analyzed data with moderate percentage of zero counts. 
Because the variance was less than the mean, we discovered that both GEO and NB models performed better than PO. Also, PH and GH 
tend to be more superior to PO, ZIP, and ZINB models for the zero inflated and under dispersed count data. 

1 INTRODUCTION                                                                   
BACKGROUND TO THE STUDY 
Analyzing data call for determination of the type of data being 
analyzed. The most basic assumption is that the data follows a 
normal distribution. However, there are many other types of 
distributions. The validity of the results can be affected by the 
dissimilarity between the distribution of the data and the dis-
tribution assumed in the analysis. Many outcomes in traffic 
accident, clinical medicine, and biomedical research are non-
negative and discrete in nature B. M. Golam Kibria (2006). 
Counts are an example of data which does not readily lend 
itself to the assumption of a normal distribution (Cameron and 
Trivedi, 1998). Thus it may be natural to model these count 
data with discrete distribution instead of continuous, which is 
usually being used as normal. The Poisson (PO) distribution 
has been used to model the count data for a long time. It has 
an important constraint that the mean and variance are equal. 
However, many processes in real life violate the underlying 
assumption of Poisson (PO) distribution. In that cases the neg-
ative binomial (NB) distribution is most preferred and it al-
lows for over-dispersion compared to Poisson distribution. 
Several researchers have suggested using the NB regression 
model as an alternative to the PO regression model when the 
count data are over or under dispersed. Both Poisson and 
Negative Binomial distribution have been used for predicting 
the accidents related count frequencies by Miaou (1994 and 
Lee and Mannering (2002) among others. Unfortunately, the 
Poisson and NB models do not address the possibility of zero 
counts and can not fit the data properly. Then corresponding 
zero augmented models, say zero inflated Poisson (ZIP), zero 
inflated negative binomial (ZINB), Poisson Hurdle (HP), and 
Hurdle Negative Binomial (NBH) are very useful to describe 
the zero inflated and excess zero count data.. The most appro-
priate reference for ZIP regression model are Hilbe (2011) and 
Lee et al. (2001) and ZINB regression model is Cameron and 
Trivedi (1998) among others. The main objective of this thesis 
is to provide a comprehensive review of these models, discuss 
how to fit appropriate statistical models for count data using R 
software and compare these models using Akaike’s Informa-
tion Criterian (AIC), log likelihood and Deviance statistics. 

STATEMENT OF THE PROBLEM 
Slymen, Ayala, Arredondo, and Elder (2006) found the ZIP 
and negative binomial ZIP models to be equal. Welsh, Cun-
ningham, Donnelly, and Lindenmayer (2007) found the Hur-
dle and ZIP models to be equal while Pardoe and Durham 
(2003) found the negative binomial ZIP model to be superior 
to both the Poisson and Hurdle models. 
One striking characteristic of these articles and others is their 
differences in terms of the proportion of zeros and the distri-
bution for the non-zeros. Further, the non-zeros varied in 
terms of their distributions from highly positively skewed to 
normal to uniform. It is possible that different models yield 
different results depending on the proportion of zeros and the 
distribution for the non-zeros. 
The best model is the one that appropriately answers the re-
searcher’s question. Beyond this, a superior model is one that 
has close proximity between the observed data and that pre-
dicted by the model. In other words, a superior model is one 
with good fit to the data. 
This study compared the fit between the Poisson, ZIP, and 
Hurdle models as well as their negative binomial formula-
tions. Each analysis will be performed for three different pro-
portions ofzeros and two different amounts of skew for the 
non-zero distribution. Thus, the intended results would clarify 
the discrepant findings of previous research. 
SIGNIFICANCE OF THE STUDY 
The superior model is the appropriate model given the re-
search question. This research provides results that aid re-
searchers in determining the appropriate model to use given 
zero-inflated data. 
RESEARCH QUESTIONS 
Model comparisons in this research were based on two meas-
ures. One is the deviance statistic, which is a measure of the 
difference in log-likelihood between two models, permitting a 
probabilistic decision as to whether one model is adequate or 
whether an alternative model is superior. This statistic is ap-
propriate when one model is nested within another model. 
The other measure is Akaike’s Information Criterion (AIC). 
This statistic penalizes for model complexity and permits 
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comparison of non-nested models; however, it can only be 
used descriptively. These two measures of model fit were used 
to compare results from our data and each model was ana-
lyzed. Specifically, the measures of model fit were used to an-
swer the following research questions: 
i. Given some sets of data, what is the difference in the 
estimated log-likelihood between (a) the Hurdle model vs. 
Poisson model?;  (b) the Negative binomial Poisson model vs. 
Poisson model?; c) the Negative binomial Hurdle model vs. 
negative binomial Poisson model?;  (d) the Negative binomial 
ZIP model vs. ZIP model?; and (e) the Negative binomial 
Hurdle model vs. Hurdle model? 
ii. Given the same set of data, what is the difference in 
the estimated AIC between all the models?  
 
 
METHODOLOGY 
A good statistical model is the one that provides a good ap-
proximate mathematical representation of the data being 
modeled with particular emphasis being on structure or pat-
terns in the data (Hilbe, 2011). Statistical analysis and model-
ling of data have become increasingly important in scientific 
research and study inquiries and the process involves applica-
tion of appropriate statistical procedure, testing hypotheses, 

interpreting data results, and coming up with valid conclu-
sions (Clinical Science Research, 2009). In dealing with count 
data, it make more sense to model these count data using PO, 
NB, ZIP, ZINB or HURDLE distributions. Regardless of 
whether the assumed model is a PO, NB, ZIP, ZINB, or HUR-
DLE it will be assumed that the occurrences will be indepen-
dent of each other. 
DATA DESCRIPTION AND ANALYSIS 
Data Description 
We analyze data on 200 individuals, on their frequency visit to 
health care provider. The objective is to model the demand for 
medical care as captured by the number of health care provid-
er visits by the people. To demonstrate the performance of the 
models, we consider how often people do visit their health 
provider data which encompass 200 respondents as the de-
pendent variable and the independents variables as If  they 
ever had a problem when they visited an health care provider 
(x1), their educational level (x2), amount they earn in a month 
(x3), family size (x4), if they have old people in their house-
hold (x5), distance to get to their health providers from their 
home (x6), if they were currently employed (x7) and type of 
their primary place of employment; whether is a permanent, 
temporary or casual job (x8). The summary statistics of the 
data is shown below: 

Table 4.1: Summary Statistics of the Data 

 y x1 x2 x3 x4 x5 x6 x7 x8 
% of zero 
count 6.5 46.5 0 0.5 52 66.5 0.5 29.5 24.5 
Mean 2.69 0.54 3.64 2.63 0.55 0.34 2.74 0.71 1 
Variance 0.981 0.25 1.992 1.46 0.46 0.224 2.203 0.209 0.905 

Skewness 
-
1.026 

-
0.141 

-
0.717 0.572 1.526 0.704 0.251 -0.906 1.841 

Std. Error 
of Skew-
ness 0.172 0.172 0.172 0.172 0.172 0.172 0.172 0.172 0.172 

Kurtosis 1.313 -2 
-
0.598 -0.05 3.455 -1.519 -1.321 -1.191 3.715 

Std. Error 
of Kurto-
sis 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342 
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Figure 1: Boxplot of the Explanatory 
Variables 
Data Analysis 
Poisson, geometric, negative binomial, zero-inflated Poisson, 
zero-inflated negative binomial, Poisson hurdle, negative bi-
nomial hurdle and Geometric hurdle models were each fit to 
the data with mixed-effects modeling (MEM), using MASS, 
car, mhurdle, e.t.c  in R 3.0.3 (2014-03-06) on the intent-to-treat 
sample of all randomized participants. The dependent vari-
able was the count of how often people do visit their health 
provider. Independent variables were the count of If  they ever 
had any problem(s) when they visited an health provider (x1), 
their educational level(x2), amount they earn in a month (x3), 
family size(x4), count of if they have old people in their 
household (x5), distance to get to their health providers from 
their home (x6), if they were currently employed (x7) and 
count of their type of  primary place of employment; whether 
is a permanent, temporary or casual job (x8). The interactions 
of the reduced variables were included in all the models.  
Various statistical tests were applied to evaluate dispersion 
and compare model fit. Under-dispersion in the Poisson re-
gression was tested by the z statistic. For negative binomial 
models, the dispersion parameters were tested for difference 
from zero with z-statistics. To compare goodness of fit be-

tween pairs of models, likelihood ratio tests (LR; for full and 
nested models), Akaike's information criterion (AIC; for non-
nested models), and Deviance (for non-nested models) were 
calculated and used to compare models. After fitting several 
models, we found that some of these variables are statistically 
significant to predict the count of how often people do visit 
their health providers. We have created different models by 
deleting variables that do not contribute to the model signifi-
cance for the different count regression method in order to get 
a best fit model for our data. There are eight sets of count re-
gression data models considered and we have fitted eight dif-
ferent full models for the data set. The R outputs have been 
provided here.The summaries of statistical analysis have been 
given in Table 4.3. 
4.3 Model Fitting 
In Poisson regression model, there are eight explanatory vari-
ables (x1, x2, x3, x4, x5, x6, x7, and x8) which do not have sig-
nificant effect on the health Care provider visits. For geometric 
and negative binomial regression models, two explanatory 
variables (x2 and x6) have significant effects on health care 
provider visits. While for hurdle poisson, hurdle geometric 
and hurdle negative binomial models, four explanatory vari-
ables (x1, x2,x3 and x7) are statistically significant for logit part 
and none of the variables are significant for the count model 
part. 

 
The result of Poisson regression analysis is described below 
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Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-2.43233  -0.32881   0.04342   0.30837   1.25689   

Table 4.2: The Parameter Estimates of Selected Poisson Model for the count of health care provider visits 

Parameters Estimate  Std. Error  z value  Pr(>|z|)     

(Intercept)   1.01383     0.17746    5.713  1.11e-08 *** 

x1             0.05456     0.09160    0.596     0.551     

x2           -0.05458     0.03764   -1.450     0.147     

x3             0.01823     0.04430    0.412     0.681     

x4            -0.02704     0.06391   -0.423    0.672     

x5            0.05008     0.09987   0.501     0.616     

x6             0.04479     0.03264    1.372     0.170     

x7             0.01084     0.11041    0.098     0.922     

x8            -0.04341     0.05203   -0.834     0.404     

 (Dispersion parameter for poisson family taken to be 1) 

 Null deviance: 106.095 on 199 degrees of freedom 

Residual deviance:  99.572 on 191 degrees of freedom 

AIC: 663.85  

Number of Fisher Scoring iterations: 5 

We first regressed the response variable ‘y’ against other explanatory variables viz. ‘x1, x2, x3, x4, x5, x6, x7, and x8 in the regres-

sion analysis. 

The regression equation which is the full model for which the regression equation is now written as: 

  4.1 

On substituting the values of Y and X’s, the equation can be written as:  

 

      4.2  

Which leads to  

 

         4.3 
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Table 4.3: Summary of fitted count regression models for our data  

Variables Geometric Poisson 
Negative 
Binomial 

Zero In-
flated Pois-
son 

Zero In-
flated Neg. 
Binomial 

Negative 
Binomial 
Hurdle 

Poisson 
Hurdle 

Geometric 
Hurdle 

Intercept 
0.997901 
(0.111183) 

1.01383 
(0.17746) 

 1.001898 
(0.110230) 

0.994991 
(0.170292) 

0.991670 
(0.172267) 

1.12437 
(0.19682) 

 1.124399 
(0.196819) 

0.81044   
(0.37572) 

x1 
0.056219 
(0.056551) 

0.05456 
(0.09160) 

0.055737 
(0.056240) 

0.052579 
(0.088123) 

 0.049075 
(0.092047) 

 -0.06860 
(0.10368) 

 -0.068602 
(0.103681) 

-0.09562    
(0.19695) 

x2 
-0.058389 
(0.023618) 

0.05458 
(0.03764) 

-0.057480 
(0.023408) 

-0.051564 
(0.038029) 

 -0.052109 
(0.038260) 

-0.01553 
(0.04228) 

 -0.015535 
(0.042277) 

 -0.01943  
(0.07960)  

x3 
  0.022569  
(0.027303) 

0.01823 
(0.04430) 

0.021472 
(0.027166) 

0.009318 
(0.045892) 

0.009769 
(0.046071) 

-0.05422 
(0.05173) 

 -0.054227 
(0.051729) 

-0.06999 
(0.09561)  

x4 
-0.022376   
(0.040126) 

-0.02704 
(0.06391) 

-0.023496 
(0.039740) 

 -0.032761 
(0.063379)  

-0.032475 
(0.063391) 

 -0.05604 
(0.07243)  

 -0.056048 
(0.072427) 

-0.07338  
(0.13378) 

x5 
 0.062735 
(0.062610)  

 0.05008 
(0.09987) 

 0.059790 
(0.062052) 

0.059269 
(0.096638)  

0.056273 
(0.099185) 

-0.03100 
(0.11247) 

-0.031000 
(0.112470) 

 -0.04486  
(0.21615) 

x6 
0.050303 
(0.020215) 

 0.04479 
(0.03264) 

0.048983 
(0.020091) 

0.045604 
(0.031314) 

 0.044287 
(0.032839) 

0.01520 
(0.03731) 

0.015202 
(0.037308) 

  0.02182  
(0.07214) 

x7 
0.006728 
(0.068226)  

0.01084 
(0.11041) 

 0.007719 
(0.067838) 

 0.014645 
(0.110300)  

0.13961 
(0.12544)  

0.139594 
(0.12544) 

0.17872 
(0.23226 ) 

0.006728 
(0.068226)  

x8 
-0.045322 
(0.030979)  

-0.04341 
(0.05203) 

-0.044870 
(0.031077)  

 -0.00873 
(0.05890) 

-0.008736 
(0.058902)  

 -0.01392 
(0.10878) 

-0.045322 
(0.030979)  

-0.04341 
(0.05203) 

Logit part 

Intercept    
 -30.09 
(170.93) 

37.526 
(377.665) 

2.3151 
(1.7228) 

2.3151  
(1.7228)   

 2.3151 
(1.7228) 

x1      
 2.0929 
(0.8463 ) 

 2.0929  
(0.8463)  

2.0929 
(0.8463) 

x2      
  -0.7878 
(0.3234) 

-0.7878  
(0.3234 ) 

-0.7878 
(0.3234) 

x3      
1.4539 
(0.4675) 

1.4539  
(0.4675) 

 1.4539  
(0.4675) 

x4      
   0.9422 
(0.8098 ) 

 0.9422   
(0.8098) 

0.9422 
(0.8098 )  

x5      
1.4832 
(0.9112)  

 1.4832     
(0.9112) 

1.4832 
(0.9112)  

x6      
  0.4869 
(0.2598) 

0.4869  
(0.2598 ) 

0.4869    
(0.2598) 

x7     
 -4.78 
(808.52 

 -2.7391 
(1.3136) 

 -2.7391 
(1.3136)  

-2.7391 
(1.3136) 

x8    
6.93 
(42.75) 

8.784 
(94.423)  

 -0.7321 
(0.4527 ) 

-0.7321    
(0.4527) 

 -0.7321 
(0.4527)  

AIC 877.81 663.85 794.22 666.11 668.09 655.98 653.98 653.98 
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Deviance  43.615  106.095    59.535        
logL -429.91  -322.93 -388.11  -323.06 -323.05  -308.99 -308.99  -379.36 
F test 2.46 0.79 2.387  -8 4.6378 4.634 22 22.3 19.9 
Pr(>F-test) 0.01 0.61 0.018 0.796 0.796 0.1 0.13 0.23 
Chisq 1.9146 6.523 2.9567 6.275 6.2837 34.351 34.352 31.66 
Pr(>Chisq) 0.9835 0.5889 0.937 0.6173 0.6155 0.04871 0.0487 0.01107 

 0.1044129 1 0.1619932      
 
Table 4.3 Summaries fitted count regression models for our data: coefficient estimates from count models, zero augmented mod-

els (both with standard errors in parentheses), maximized log-likelihood, AIC, and deviance statistic. The log-likelihood ratio 

test of the geometric, PO, NB, ZIP, and ZINB produced virtually identical results which are not significant while hurdle models 

(PO Hurdle, NB Hurdle and the Geometric Hurdle) also produced same results that say that the models are significant. 

4.4     Diagnostics 

In diagnostic check, scatter plots are very important in checking the adequacy of the model. 

Below are some of the plots 

Figure2: Geometric Regression fitted 

plots  
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Figure 3: Poisson Regression fitted 

plots  

Figure4: Negative Binomial Regres-

sion  

4.5 Model Comparison 

To compare goodness of fit between pairs of models, likelih-

ood ratio tests (for full and nested models), Akaike's informa-

tion criterion (AIC; for non-nested models), and deviance sta-

tistics (for non-nested models) were calculated. AIC recom-

mended Hurdle negative binomial and hurdle geometric re-

gression models as best model, The Deviance statistics sug-

gested the Geometric regression model as the best model 

while for the log likelihood, the poisson hurdle and the nega-

tive binomial hurdle models appeared to best model our data 

(see table 4.3). 

The Poisson model is clearly inferior to all other fits. The geo-

metric and the negative binomial already improves the fit 

dramatically but can in turn be improved by the hurdle mod-

els. This also reflects that the under-dispersion in the data is 

captured better by the geometric and the negative-binomial-

based models than the plain Poisson model. Additionally, it is 

of interest how the zero counts are captured by the various 

models. Therefore, the observed zero counts are compared to 

the expected number of zero counts for the likelihood-based 

models: 

Thus, the Poisson model is again not appropriate whereas the 

negative-binomial-based models are much better in modeling 

the zero counts. In summary, the hurdle models lead to the 

best results (in terms of likelihood) on this data set. For the 

hurdle model, the zero hurdle components describes the prob-
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ability of observing a positive count whereas, for the ZINB 

model, the zero-inflation component predicts the probability 

of observing a zero count from the point mass component. 

Overall, both models lead to the same qualitative results and 

very similar model fits. Perhaps the hurdle model is slightly 

preferable because it has the nicer interpretation: there is one 

process that controls whether a patient sees a health care pro-

vider or not, and a second process that determines how many 

office visits are made. 

4.6 Model Selection: 

We ran a full glm for each of the our considered count regres-

sion model involving count of visit to health provider (y) as 

our response variables and x1, x2 , x3, ...., x8 as the eight pre-

dictor variables. The idea is to find a suitable reduced model if 

possible that will best fit the model. 

 

For poisson regression 

Deviance Residuals:  

     Min         1Q     Median        3Q         Max   

-2.43233    -0.32881   0.04342    0.30837    1.25689   

Table 4.4: The Parameter Estimates of Selected Poisson Model for the count of health care provider visits 

  Estimate   Std. Error   z value   Pr(>|z|)     

(Intercept)  1.01383     0.17746     5.713   1.11e-08 

x1             0.05456     0.09160     0.596     0.551     

x2            -0.05458     0.03764    -1.450      0.147     

x3             0.01823    0.04430     0.412      0.681     

x4            -0.02704     0.06391     -0.423      0.672     

x5             0.05008    0.09987     0.501      0.616     

x6             0.04479     0.03264     1.372      0.170     

x7             0.01084     0.11041     0.098      0.922     

x8            -0.04341     0.05203     -0.834      0.404     

 

 (Dispersion parameter for poisson family taken to be 1) 

    Null deviance: 106.095  on 199  degrees of freedom 

Residual deviance:  99.572  on 191  degrees of freedom 

AIC: 663.85 
Number of Fisher Scoring iterations: 5 

we then performed a backward stepwise regression using P- values to delete predictors one-at-a-time. We chose a signific-
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ance level α = 0.05 before we started. Then started with the full 

model, looked at the corresponding model summary, and then 

identify the predictor which has the largest P-value (for the z 

test) aboveour α-level.  Then fit a new glm model with that 

predictor deleted. We used the update() function to  achieve 

this.Furthermore, we looked at the model summary corres-

ponding to the new model, and again identified the predictor 

for which the P-value (for the z test) is that predictor deleted, 

and continue this process until all the remaining P-values 

were below our α-level. For the poisson regression, through-

out the whole process none of the p-values of the predictor 

variable was less the threshold (0.05).  

However, the same process was applied for other count re-

gression models and the reduced models for which the model 

is significant are shown: 

For Geometric regression we have new fitted glm models for 

the listwise deletion process showm below: 

 

 

 

 

 

 

And the best reduced model is 

 

For Negative Binomial,  

 

 

 

 

 

 

And the best reduced model is 

 

Poisson Hurdle Regression 
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And the model is  

  Nega-

tive Binomial Hurdle  

 

 

 

 

 

 

And the final model is 

 

Geometric Hurdle  

 

 

 

 

 

 

And the final model is 

 

 

Another method we employed is in R is the stepwise regres-

sion method.  We performed the forward stepwise regression, 

backward stepwise regression, and the combination of both, 

but R uses the AIC criterion at each step instead of the criteria 

used before.  To use this procedure in the forward direction, 

we first fit a base model (with one predictor) and a full model 

(with all the predictors we considered).   To fit a base model in 

our poisson regression, we call it reduced.ypoi 
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> reduced.ypoi<-

glm(formula=y~1,family=poisson,data=pdataa) 

 We then used ypoi as our full model. 

Table 4.5: The Forward stepwise variable  Selected Poisson Model for the count of health care provider visits 

Variables Df  Deviance     AIC 

+ x8      1    104.03   654.31 

<none>  106.09   654.38 

+ x2      1    104.30   654.58 

+ x6      1    104.70   654.98 

+ x7      1    105.29   655.57 

+ x1      1    105.39   655.67 

+ x5      1    105.55   655.83 

+ x4      1    105.56   655.84 

+ x3      1    105.75   656.03 

Step:  AIC=654.31 

y ~ x8 
  Df  Deviance     AIC 

<none>  104.03   654.31 

+ x2      1    102.60   654.88 

+ x6      1    102.95   655.23 

+ x1      1    103.49   655.77 

+ x7     1    103.69   655.97 

+ x4     1    103.77   656.05 

+ x3     1    103.83   656.11 

+ x5     1    103.85   656.13 

Call:  glm(formula = y ~ x8, family = poisson, data = pdataa) 

Coefficients: 

(Intercept)             x8   

    1.05366      -0.06798   

Degrees of Freedom: 199 Total (i.e. Null);  198 Residual 

Null Deviance:     106.1  

Residual Deviance: 104  AIC: 654.3 

The forward stepwise regression procedure identified the model which included the predictor x8, but not others, as the one 

which produced the lowest value of AIC. The same process was performed for other models and the results are shown at the 

appendix. 
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We used the same procedure in the backward direction; the command is much simpler, since the full model is the base model.   

Table 4.6: The Backward Stepwise Variable Selected Poisson Model for the count of health care provider visits 

  Df  Deviance     AIC 

- x7     1    99.581   661.86 

- x3     1    99.741   662.02 

- x4     1    99.753   662.03 

- x5     1    99.822   662.10 

- x1     1    99.927   662.21 

- x8     1   100.276   662.56 

- x6     1   101.453   663.73 

<none>  99.572   663.85 

- x2     1   101.668   663.95 

 

Step:  AIC=661.86 

y ~ x1 + x2 + x3 + x4 + x5 + x6 + x8 

  Df  Deviance     AIC 

- x3     1    99.747   660.03 

- x4    1    99.764   660.04 

- x5     1    99.865   660.15 

- x1     1   100.010   660.29 

- x8    1   100.323   660.60 

<none>  99.581   661.86 

- x2     1   101.670   661.95 

- x6     1   101.752   662.03 

 

Step:  AIC=660.03 

y ~ x1 + x2 + x4 + x5 + x6 + x8 

 Df  Deviance     AIC 

- x5     1    99.958   658.24 

- x4     1    99.959   658.24 

- x1     1   100.152   658.43 

- x8     1   100.484   658.76 

<none>  99.747   660.03 

- x6     1   101.836   660.12 

- x2     1   101.842   660.12 
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Step:  AIC=658.24 

y ~ x1 + x2 + x4 + x6 + x8 

 Df  Deviance     AIC 

- x4     1   100.174   656.45 

- x1     1   100.319   656.60 

- x8     1   100.932   657.21 

- x6     1   101.900   658.18 

<none>  99.958   658.24 

- x2     1   102.259   658.54 

 

 

Step:  AIC=656.45 

y ~ x1 + x2 + x6 + x8 

  Df  Deviance     AIC 

- x1     1    100.56   654.84 

- x8     1    101.32   655.60 

- x6     1    102.08   656.36 

<none>  100.17   656.45 

- x2     1    102.50   656.78 

 

Step:  AIC=654.84 

y ~ x2 + x6 + x8 

  Df  Deviance     AIC 

- x8     1    101.78   654.07 

<none>  100.56   654.84 

- x6     1    102.60   654.88 

- x2     1    102.95   655.23 

 

Step:  AIC=654.07 

y ~ x2 + x6 

  Df  Deviance     AIC 

<none>  101.78   654.07 

- x6     1    104.30   654.58 

- x2     1    104.70   654.98 
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Call:  glm(formula = y ~ x2 + x6, family = poisson, data = pdataa) 

 

Coefficients: 

(Intercept)           x2           x6   

    1.04689     -0.05361      0.04805   

 

Degrees of Freedom: 199 Total (i.e. Null);  197 Residual 

Null Deviance:     106.1  

Residual Deviance: 101.8  AIC: 654.1  

The backward elimination procedure also identified the best model as one which includes only x2 and x6, not others.   

Table 4.7: The “both” stepwise variable Selected Poisson Model for the count of health care provider visits 

  Df  Deviance     AIC 

+ x8      1    104.03   654.31 

<none>   106.09   654.38 

+ x2      1    104.30   654.58 

+ x6      1    104.70   654.98 

+ x7      1    105.29   655.57 

+ x1      1    105.39   655.67 

+ x5      1    105.55   655.83 

+ x4      1    105.56   655.84 

+ x3      1    105.75   656.03 

 

Step:  AIC=654.31 

y ~ x8 

  Df  Deviance     AIC 

<none>   104.03   654.31 

- x8      1    106.09   654.38 

+ x2      1    102.60   654.88 

+ x6      1    102.95   655.23 

+ x1      1    103.49   655.77 

+ x7      1    103.69   655.97 

+ x4      1    103.77   656.05 

+ x3      1    103.83   656.11 

+ x5      1    103.85   656.13 
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Call:  glm(formula = y ~ x8, family = poisson, data = pdataa) 

Coefficients: 

(Intercept)           x8   

    1.05366     -0.06798   

Degrees of Freedom: 199 Total (i.e. Null);  198 Residual 

Null Deviance:     106.1  

Residual Deviance: 104  AIC: 654.3 

And the selected best models for other GEO, NB, ZIP, ZINB, Hurdle poisson, NB-hurdle and Geometric-Hurdle for each method 

are shown below: 

Geometric Forward Stepwise Selection; the procedure identi-

fied the variable x8 and the  backward stepwise selection iden-

tified x2, x6 and x8 as the best explanatory variable while the 

combination of both steps also selected x8 as most significant. 

For the negative binomial, the model reduced to only variable 

x8 through forward stepwise selection and the  backward 

stepwise selection identified x2, x6 and x8 as the best explana-

tory variable while the combination of both steps also selected 

x8 as most significant.The zero inflated negative binomial 

supported x1 and x2 as best explanatory variable at the nega-

tive binomial part and selected x3, x4, x5, x6 and x7 at the logit 

part for the backward stepwise selection. Negative binomial 

hurdle supported x3, x2 and x1 for the count model part and 

also selected x3, x2 and x1 for the zero hurdle model part for 

the forward stepwise method. The backward stepwise method 

and the both methods combined for selection also identified 

x1, x2 and x3 as the best explanatory variables for both the 

count model part and the zero hurdle part. Even the poisson  

hurdle and the geometric hurdle also identified x1, x2 and x3 

as the best explanatory variables at both the count model part 

and the zero hurdle model part  for all the stepwise methods. 

 

 

 

 

4.7 Interactions 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-1.65656 -0.09890   0.00457   0.14886   0.66170   

Table 4.8: Interaction between Variables for Geometric Model for the Count of Health Care Provider Visits 

                       Estimate    Std. Error       t value      Pr(>|t|)     

(Intercept)      1.983266    0.644377    3.078    0.00244 **  
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x1               3.187807    3.276541    0.973    0.33199     

x2              -0.805078    0.203240   -3.961     0.00011 *** 

x3               0.021304    0.325270    0.065    0.94786     

x6              -0.170188    0.276090   -0.616    0.53845     

x7              -1.315607    1.658741   -0.793    0.42882     

x1:x2            0.002808    0.784897    0.004    0.99715     

x1:x3           -1.727720    1.347931   -1.282    0.20169     

x2:x3            0.147704    0.082771    1.784    0.07615 .   

x1:x6           -2.646111    2.083192   -1.270    0.20576     

x2:x6            0.193125    0.080111    2.411    0.01700 *   

x3:x6           -0.085281    0.121789   -0.700    0.48475     

x1:x7           -2.786038    3.659781   -0.761    0.44757     

x2:x7            0.962720    0.465914    2.066    0.04033 *   

x3:x7            0.186877    0.693865    0.269    0.78801     

x6:x7            0.679713    0.594264    1.144    0.25434     

x1:x2:x3         0.192937    0.301343   0.640    0.52288     

x1:x2:x6         0.416354    0.512426    0.813    0.41765     

x1:x3:x6         1.143734    0.747775    1.530    0.12802     

x2:x3:x6        -0.020803    0.030102   -0.691   0.49047     

x1:x2:x7        -0.207640    0.901820   -0.230    0.81818     

x1:x3:x7         1.640787    1.530817    1.072    0.28533     

x2:x3:x7        -0.227074    0.174201   -1.304    0.19418     

x1:x6:x7         2.013240    2.158938   0.933    0.35241     

x2:x6:x7        -0.362835    0.158883   -2.284    0.02364 *   

x3:x6:x7        -0.129635    0.228198   -0.568    0.57074     

x1:x2:x3:x6     -0.213501    0.173982   -1.227    0.22149     

x1:x2:x3:x7     -0.149056    0.346786   -0.430    0.66788     

x1:x2:x6:x7     -0.211678    0.532922   -0.397    0.69172     

x1:x3:x6:x7     -0.890007    0.784526   -1.134    0.25822     

x2:x3:x6:x7      0.085203    0.056138    1.518    0.13096     

x1:x2:x3:x6:x7   0.144470    0.182450    0.792    0.42957     

 (Dispersion parameter for Negative Binomial (1) family taken to be 0.1074826) 

    Null deviance: 43.615 on 199 degrees of freedom 

Residual deviance: 37.220 on 168 degrees of freedom 

AIC: 919.33 
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Number of Fisher Scoring iterations: 11 

Conclusion 

Count regression models afford analysts the opportunity to 

move beyond categorical data in Modeling projects. These 

approaches account for the unique distribution of count data 

and preserve the validity and power of the statistical analysis. 

Count regression models also afford analysts the opportunity 

to precisely measure the data distribution through Pearson 

goodness-of-fit tests to ensure the selection of the correct mod-

el type. 

This thesis provides both methodological and empirical analy-

sis of health care provider visits data. We have fitted several 

popular count regression models, Poisson (PO), Negative Bi-

nomial (NB), Geometric (GEO), Zero-Inflated Poisson (ZIP), 

Zero-Inflated Negative Binomial (ZINB), Poisson Hurdle (PH), 

Negative binomial Hurdle (NBH), and Geometric Hurdle 

(GH) to predict the health care provider visits. We consider 

moderate (6.5%) to high (65%) number of zeros in the models. 

A total of twelve different statistical models were fitted in this 

thesis. All fitted models include significant explanatory va-

riables. Based on deviance and AIC, it appeared that GEOmo-

del performed better than PO and NB models, followed by NB 

Model respectively. However, based on the AIC, it also ap-

peared that GH, PH, and NBH model performed better than 

PO, NB, GEO, ZIP and ZINB models respectively. The empiri-

cal study of this thesis revealed that if the under-dispersion 

and zero-inflation of health care provider visits is found to be 

moderate to high, GEO, PH and GH models are potential al-

ternatives to PO and ZIP regression models. Poisson regres-

sion models serve well under nearly homogeneous condition, 

while GEO and NB models serve better while data are under 

dispersed. 
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